平成 26 年度 共同研究報告書

研究課題		免疫ニッチによる癌幹細胞制御機構の解析
研究区分		一般共同研究
研究代表者	所属	東京医科歯科大学 難治疾患研究所 幹細胞制御分野
	氏名	教授 田賀哲也
受け入れ教員名	氏名	地主将久、近藤亨
研究目的		腫瘍内の微小環境が発癌過程に及ぼす重要性が解明されつつある
		背景において、がん幹細胞が微小環境因子である血管内皮細胞、免
		疫細胞などストローマ細胞の活性修飾を介し、さらなる発癌促進機
		能に寄与することが注目されている。本研究は、腫瘍内マクロファ
		ージなど炎症細胞が、白血病あるいは、神経膠腫など固形癌の癌幹
		細胞の自己複製能、抗癌剤耐性などに及ぼす影響に関する解析を主
		眼に遂行する。網羅的な解析により癌幹細胞を制御する免疫側因子
		の同定も行う。このように当課題は微小環境(ニッチ)、特に免疫
		ニッチによる癌幹細胞制御機構の解明と、免疫ニッチの改変による
		治療法開発への寄与を目的として実施する。
研究内容・成果		癌組織中に存在する癌幹細胞 (cancer stem cell) は、化学療法や
		放射線療法などへの抵抗性を有するとともに、自己複製能と多分化
		能に基づいて、再び不均質な癌組織を形成・維持・拡大する起源細
		胞として捉えられており、癌の進展と再発に深く関与するとされ
		る。また、癌幹細胞の生存と維持に関わる微小環境(ニッチ)の存
		在も示唆されており、癌の根治に向けて、癌幹細胞および癌幹細胞
		ニッチを標的とした治療法の開発が期待される。当課題の準備研究
		として研究代表者らはグリオーマ細胞株 C6 において、
		Hoechst33342 色素排出性細胞集団(side population, SP)が癌幹
		細胞画分であることを以前に報告した。これを踏まえ、癌幹細胞の
		維持や癌組織の拡大に寄与する微小環境としてのニッチ、特に免疫
		ニッチについて当課題において取り組んだ。グリオーマ細胞株 C6
		のSP細胞とMP細胞に発現する遺伝子についてcDNAマイクロア
		レイ解析を行ったところ、単球の動員やマクロファージ前駆細胞の
		増殖およびマクロファージ分化を担う CCL2、CXCL12、GM-CSF
		などの遺伝子発現が、SP 細胞において亢進していた。そこで SP
		細胞の培養上清を用いてマウス骨髄由来単球を培養したところ、単
		球から CD204 陽性の腫瘍関連マクロファージ(TAM)への分化が
		誘導された。さらに免疫不全マウス脳内への共移植実験において、
		これら SP 細胞によって誘導される TAM が SP 細胞の腫瘍形成能
		を促進することが確認され、癌幹細胞は腫瘍内にニッチを自ら構築
		し利用する巧みな生存戦略をとるものと推察できた。このように、
		当課題の主目的である免疫ニッチによる癌幹細胞制御機構の一端

	,
	を明らかにすることができた。今後は癌幹細胞の利己的な生存戦略
	の存在を分子的に説明するとともに、それらを標的として、新たな
	治療戦略の開発に貢献したい。
成果	【学会報告】
	■発表者名
	Yasuhiro Kokubu, Kouichi Tabu, Wenqian Wang, Muhammad
	Baghdadi, Masahisa Jinushi, Tetsuya Taga.
	■発表タイトル
	C6 glioma stem cell-derived GM-CSF induces
	CD11chighCD204(+) protumoral macrophages.
	■学会名
	The 73rd Annual Meeting of the Japanese Cancer Association.
	■開催場所
	Pacifico Yokohama, Yokohama
	■開催日
	September 25, 2014
	■発表形態
	Poster
	【論文発表】
	該当なし
	【プロジェクト】
	該当なし
	【新聞報道】
	該当なし