研究課題		発癌微小環境としての低酸素再酸素化の証明
研究区分		一般共同研究
研究代表者	所属	鳥取大学医学部病態生化学分野
	氏名	教授・岡田 太
受け入れ教員名	氏名	浜田淳一
研究目的		癌細胞の多様性を誘導・維持する微小環境因子として、組織に形成
		される低酸素再酸素環境に着目した. 平成 23 年度より連続した一
		般共同研究の採択を受け、ヒト、マウス、ラットに由来する複数の
		正常細胞株に低酸素再酸素化を繰り返すことで,活性酸化窒素を介
		して発癌に至ることを見出した. 本年度は、活性酸化窒素の細胞内
		生成源の特定に関する解析に加え、これまで継続してきた動物個体
		における虚血再灌流障害による発癌性の証明を行う.
研究内容・成果		低酸素・再酸素化環境下で細胞内に生じる活性酸素・活性窒素の産
		生源(細胞内器官)を阻害剤等を使用して特定する研究を行った.
		その結果、細胞種毎に阻害剤の至適濃度に違いがあることが判明
		し、これまでに得られた成果を含めもう一度検証のし直しを行っ
		た. その結果、ミトコンドリア複合体、キサンチン・キサンチンオ
		キシダーゼや鉄の関与を再確認した.中でもミトコンドリア複合体
		の関与が示された.また、細胞を低酸素環境下あるいは再酸素化環
		境に置いてから時間経過に伴う活性酸素あるいは活性窒素の生成
		ピークが存在すること、しかもこのピークは細胞種を変えても概ね
		共通していること, さらに各生成ピークに関わる活性酸素・活性窒
		素の産生源(細胞内器官)は必ずしも一致しないことなどを明らか
		にした.また、当該一般共同研究では、低酸素再酸素化による動物
		個体における癌化の証明を最終目標にしている. 現在までに左腎動
		静脈あるいは精索を対象に虚血再灌流障害を加えているが、いずれ
		も発癌には至っていない。しかしながら、我々の確立した虚血再灌
		流法において虚血後もしくは再灌流後に一酸化窒素や活性酸素が
		虚血再灌流臓器に生成されることを確認していることから、さらに
		障害を継続する. 加えて, 遺伝子改変動物 (p53 遺伝子や K-ras 遺
		伝子)の導入も考慮中である.
成果		【学会報告】
		該当なし
		【論文発表】
		■発表者名
		Kanda Y, Kawaguchi T, Kuramitsu Y, Kitagawa T, Kobayashi T,
		Takahashi N, Tazawa H, Habelhah H, Hamada J-I, Kobayashi
		M, Hirahata M, Onuma K, Osaki M, Nakamura K, Kitagawa T,

Hosokawa M and Okada F.

■論文名

Fascin regulates chronic inflammation related human colon carcinogenesis by inhibiting cell anoikis.

■掲載雑誌名

Proteomics

■日付・巻・号

14: 1031-1041, 2014. doi: 10.1002/pmic.201300414

【プロジェクト】

該当なし

【新聞報道】

該当なし