Title of Research Project		The ADP-Ribosyltransferase, TIPARP, is a critical
		mediator of AHR-mediated suppression of the
		innate immune response after viral infection
	Institution	University of Oslo
Applicant	Job title	Professor
	and name	Jason Matthews
Visiting	Name	Jason Matthews
researcher		
Purpose of the Research Project		The purpose of the research project is to investigate the role of
(approx. 250 words)		TIPARP in AHR-dependent immunosuppression following
		activation of the innate immune response. The AHR is a
		ligand-activated transcription factor that mediates the action of
		many environmental xenobiotics, including
		2,3,7,8-tetrachlorodibenzo- p -dioxin (dioxin). It also has an
		important role in the immune system and in T cell
		differentiation, but its role in the innate immune response after
		viral infection is incompletely understood. Dr. Takaoka's group is
		an expert in innate immune signaling. They have been studying
		that mono-ADP-ribosyltransferase play important roles in the
		innate immune response following viral infection. During the
		course of their studies they observed that TIPARP was an
		important mediator of AHR-dependent immunosuppression in
		response to viral infection. My lab recently found that TIPARP,
		an AHR target gene, is a critical regulator of many aspects of
		AHR activity and its loss increases the sensitivity of mice to
		dioxin toxicities. In our ongoing collaboration with Dr. Takaoka
		and colleagues, we have generated evidence that both
		endogenous and exogenous AHR ligands suppress the IFN
		response after infection with various types of virus, and we have
		identified TIPARP as the key regulator of AHR-dependent
		innate immune suppression. A manuscript summarizing our
		collaborative work with focus on the endogenous AHR activation
		and the innate immune response was recently accepted in
		Nature Immunology.
Development of the Research		
Project and Results		
(approx 850 words)		

As mentioned above, our collaborative joint research project has resulted in a publication in Nature Immunology. In that study we found that constitutive AHR-signaling in the steady state modulates type-I-IFN response during infection with various types of virus. Virus-induced IFN-beta production was enhanced in AHR-deficient cells or mice, with a highly restricted viral replication. The increased response was also observed upon pharmacological inhibition with an AHR antagonist or a TDO/IDO inhibitor, which prevents the generation of potential endogenous ligands for AHR. Most interesting and relevant for our collaboration was the finding that the AHR target gene, TIPARP caused the AHR-induced downregulation of IFN response. Mechanistically, TIPARP interacted with TBK1. mono-ADP-ribosylated TBK1 resulting in a repression of its activity. Thus, our study revealed the physiological significance of endogenous activation of AHR-signaling in shaping the IFN-mediated innate response, and suggested the AHR-TIPARP axis as a potential therapeutic target for enhancing antiviral response. We are continuing this collaboration by investigating the action of exogenous AHR activation in the context of the AHR/TIPARP axis and the IFN-mediated innate immune response. These studies will include analysis of unique genetically modified mouse models of TIPARP that have been generated in my lab, which Dr. Takaoda and I will use to unravel the role of TIPARP in innate immunity. These mouse models include Tiparp whole body knockouts and a CRISPR generated catalytic mutant of Tiparp to determine the role of its enzymatic activity in mediating IFN-dependent activity. We will also investigate the cellular signals beyond the AHR axis that regulate TIPARP expression. This will involve classic analysis, chromatin promoter immunoprecipitation and reporter assays. Moreover, we will work together to identify the mono-ADP-ribosylated residues on TBK1 with the intention of using this information to develop inhibitors of TBK1. We have

	established a mass spectrometric method that effectively detects mono-ADP-ribosylation on target proteins. We have used the approach to identify 6 different mono-ADP-ribosylated peptides in TIPARP and 2 in AHR. Since no consensus ADP-ribosylation sites are known, the only way to determine which residues are mono-ADP-ribosylated is by using mass spectrometry. I
	collaboration.
Publication *Enter the names of conference or journal and its vol. No. where the above work was presented.	【Conference, symposium, workshop etc.】
	[Journals] Constitutive aryl hydrocarbon receptor signaling constrains type I IFN-mediated antiviral innate defense Taisho Yamada ^{1,9} , Hiromasa Horimoto ^{1,2,9} , Takeshi Kameyama ^{1,3} , Sumio Hayakawa ^{1,3} , Hiroaki Yamato ^{1,2} , Masayoshi Dazai ^{1,2} , Ayato Takada ⁴ , Hiroshi Kida ⁵ , Debbie Bott ⁶ , Angela C. Zhou ⁷ , David Hutin ⁶ , Tania H. Watts ⁷ , Masahiro Asaka ² , Jason Matthews ^{6,8} , and Akinori Takaoka ^{1,3} Nature Immunology In press.