Title of Research Project		The ADP-Ribosyltransferase, TIPARP, and mono-ADP-ribosylation are critical mediators of AHR-dependent regulation of inflammation and immune
	Institution	responses Institute for Genetic Medicine
Applicant	Job title	Professor Akinori Takaoka
rippilouit	and name	
Visiting	Name	Professor Jason Matthews University of Oslo
researcher	Tranic	
Purpose of the Res	earch Proiect	The Aryl hydrocarbon receptor (AHR) is a transcription factor
(approx. 250 words)		that regulates the expression of many genes at the interfaces
		among environmental clues, metabolic alterations, and the
		immune system The AHR has historically been studied due to its
		ability to mediate the toxic responses of environmental
		pollutants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin
		(TCDD/dioxin). It is now recognized as an essential gatekeeper
		integrating signals from the diet and endogenous metabolism to
		modulate immune cell homeostasis, reactive oxygen species,
		immunosuppression and tumorigenesis. The AHR regulates T
		cell differentiation, immune tolerance and innate immunity.
		Through this collaboration, we reported that TIPARP is the key
		regulator of AHR-dependent innate immune suppression and
		found that it specifically ADP-ribosylates TBK1 reducing its
		ability to activate type I interferon responses. (Yamada et al.
		Nature Immunology 2016). However, we still know very little
		about TIPARP's role in these processes, how it contributes to
		adaptive immunity, how the TIPARP-AHR axis is regulated
		during the innate/adaptive immune responses, and the role of
		TIPARP in AHR-dependent B or T cell function. Moreover, the
		inhibition of TIPARP may serve as potential therapeutic
		strategy to boost cancer immunotherapy by reversing tumour
		associated immunosuppression through increases in type I
		interferon signaling. Our proposed project will include
		comprehensive studies of Tiparp knockout mice, primary and
		immortalize cell line models, as well as genomic and proteomic
		methods to characterize the importance of TIPARP in the
		immune system and cancer immunotherapy.

Development of the Research	During the past year my lab gained expertise in characterizing
Project and Results	type I interferon response after treatment with synthetic
(approx 850 words)	pathogen-associated molecular patterns (PAMPs) like 3pRNA
	and cGAMP), through the sharing of protocols and material from
	Prof. Takaoka's group. For these studies we have focused on
	mouse embyronic fibroblasts (MEFs) from our Tiparp-/- mice and
	from our Tiparp catalytic mutant mice TiparpH532A. We found
	that exposure to PAMPs, as well as LPS dramatically increases
	the expression of several proinflammatory cytokines in addition
	to type I interferons. Our preliminary data suggest that TIPARP
	targets multiple components of the nuclear factor
	kappa-light-chain-enhancer of activated B (NFkB) signaling
	pathway and that NFkB activation regulates TIPARP
	expression independently of AHR. This suggests that TIPARP is
	part of a novel negative feedback loop regulated NFkB signaling,
	which could have important implications in inflammatory
	diseases. We are working to identify the mono-ADP-ribosylated
	peptides in NFkB. Another research focus of this work will be to
	investigate the role of TIPARP in T and B cell differentiation of
	function. Once isolated, the cells will be differentiation and the
	presence of absence of AHR ligands to determine the impact of
	TIPARP and AHR and T and B cell differentiation and function.
	These studies are ongoing. Together with a collaborator in the
	USA, we have identified a selective TIPARP inhibitor that we
	are currently testing in our various MEF lines. In preliminary
	studies, the new inhibitor phenocopied the effect of TIPARP loss
	and genetic catalytic inhibition. We are now poised to begin in
	vivo studies to determine if pharmacological inhibition of
	TIPARP could be a beneficial anti-viral therapy, but also cancer
	immunotherapy because of its increase in type I interferon
	signaling. Finally, we are creating a panel of CRISPR/Cas9
	generated TIPARP knockout cell lines to determine the potential
	role the TIPARP in cancer. We our focusing on breast, liver, lung
	and pancreatic cancer cells. It has proven to be more difficult to
	create and isolate TIPARP ko cell lines, but we have created two
	breast cancer lines, to date. We have altered our strategy to
	improve knockout cell generation.
	We have also finally generated a mouse monoclonal antibody
	that recognizes TIPARP. This antibody has taken us almost 4
	years to produce and as far superior to all of the current

commercially available ones. Our unique MEF cell lines and animal models provide excellent material to test the specificity and quality of the antibody. This is a major advancement in TIPARP research, since the majority of studies have been done using overexpressed proteins, transient transfection or stable cell lines. We still know very little about endogenous TIPARP signaling, its cellular location, cellular targets and how it is regulated at the protein level. Ongoing studies reveal that TIPARP inhibition either pharmacologically or genetically results in increased stabilization of TIPARP protein. This supports our previous view that TIPARP is rapidly degraded and that it acts to regulate protein levels via ADP-ribosylation. The antibody cross reacts with human and mouse TIPARP and works in western blots, immunoprecipitations and immunohistochemistry, albeit not perfectly. We are starting a series of experiments to probe the role of endogenous TIPARP in AHR and type I interferon signaling. However, before we can expand our studies we need to generate more anti-TIPARP antibody from our hybridoma cells. The antibody was first isolated in early December of 2019.

Our mouse models will be used to evaluate the role of TIPARP in cancer immunotherapy in combination with immune check point inhibitors to boost therapeutic responses. Inhibiting immune checkpoint proteins, such as programmed cell death protein 1 (PD1), and its ligand, programmed death-ligand 1 (PDL1), have shown promise in the treatment for multiple cancers by blocking immunosuppression. PD1 expressed on T cells counters positive signals through T cell receptors by engaging its ligand PDL1. During infections and under normal physiological conditions, the PD1/PDL1 axis is an essence negative regulator of T cells. Blocking the PD1 pathway during cancer, improves T cell function and reduces tumour burden. PD1 pathway inhibitors promoted durable anti-tumour immune responses in several trials, which led to the approval of the monoclonal antibodies raised against PD1 (nivolumab and pembrolizumab), or against PDL1 (atezolizumab, and avelumab) for therapeutic use in various cancers, including melanoma, non-small-cell lung cancer, breast and hepatocellular carcinoma. However, many patients do not respond and 1/3 of those that do, experience relapse. Thus, efforts to increase the effectiveness of

	immunotherapy are urgently needed. We believe the TIPARP is
	a promising target that should be considered. In the upcoming
	year, if our joint research application is successful, we will
	explore the role of TIPARP inhibition to boost the effectiveness of
	cancer immunotherapy.
	We feel that this <i>novel</i> , research strategy to characterize the role
	of TIPARP in type I interferon response offers great potential for
	both anti-viral but also anti-cancer therapy. Our complementary
	expertise and access to unique animal and cell line models for
	studying TIPARP activity, give us an advantage over other labs
	pursuing this line of research. Continued support from the joint
	research program will ensure the success of this research.
Publication	[Conference, symposium, workshop etc.]
*Enter the names of conference	Local department seminars at the University of Oslo.
or journal and its vol. No. where	
the above work was presented.	
	[Journals]
	Yamada et al Nature Immunol 2016 Jun;17(6):687-94. doi:
	10.1038/ni.3422. Epub 2016 Apr 18.