令和2年度 共同研究報告書

研究区分		一般共同研究		
研究課題名		心不全発症における神経活性化の役割の解明		
新規・継続の別		新規・継続		
研究代表者	所属	東京大学 40 崩	35 歳	
		以下	以下()	
	職名・氏名	教授・小室一成		
研究分担者 (適宜行を追加し て下さい)	所属			
	職名・氏名			
	所属			
	職名・氏名			
受け入れ教員	職名・氏名	教授・村上正晃	I	
概要		臓器連関の新規概念であるゲートウェイ反射と心疾患との関係は		
(100~150 字程度)		未解明である。しかし、β遮断薬が心不全治療薬として有効であ		
		ることを勘案すると、神経調節は心不全において重要な役割を担		
		っていると考える。そこでゲートウェイ反射を介した神経調節が		
		心不全誘導のメカニズムに関与するかを、種々のモデルマウスを		
		用いて解明する。		
研究目的		私たちは様々な病態モデル動物を用いて、病態生理学的および分		
(300 字程度)		子生物学的アプローチにより心不全の病態解明を目指すととも		
		に、新規心不全治療法の開発につながるシーズの探索を行う橋渡		
		し研究を展開している。現在はβアドレナリン受容体シグナル経		
		路などに着目し、心不全発症の分子メカニズムの解明を目指した		
		研究を行っている。心不全状態では様々な臓器の疾患が心臓に負		
		荷を与えうるため、臓器連関の観点からも研究を進めることが必		
		要である。共同研究先の村上教授は、臓器連関の新規概念である		
		ゲートウェイ反射を発見されたが、ゲートウェイ反射を介した神		
		経調節と心不全との関係は未だ明らかではない。そこで本研究の		
		目的は、私たちのこれまでの心臓に関する研究と村上教授のゲー		
		トウェイ反射のコンセプトを融合させ、心不全の予防・治療法を		
		開発し、社会に貢献することである。		
研究内容・成果		心臓の収縮・弛緩は交感神経・副交感神経により調節されている。		
(1000 字程度・Web 会議の回数		現在 β 受容体遮断薬は慢性心不全治療薬として広く使用されて		
も記載)		いるが、β受容体は心筋細胞のみならず内皮細胞や線維芽細胞に		
		も発現しており、β 受容体遮断薬が慢性心不全において有効性を		
		示すメカニズムに関しては依然不明な点が多い。私たちは世界に		
		先駆けて β1 受容体コンディショナルノックアウトマウスを作		
		成した。まず心筋細胞における β1 受容体の役割を検討するた		

め、心筋細胞特異的 β 1 受容体ノックアウトマウスを作成した。 このマウスに急性圧負荷ストレスを与えると、ノックアウトマウスでは野生型マウスと比較して負荷前、負荷中の心機能には差異は認めなかったが、負荷解除後の心機能回復が大きく遅延していた。この結果は急性負荷に対する交感神経の保護作用を示唆している。今後、この反応におけるゲートウェイ反射の関与を詳細に検討する予定である。

また神経調節異常が主原因と考えられているタコツボ型心筋症 モデルにおいてもゲートウェイ反射の関与を検討する予定であ る。これまでにマウスを用いタコツボ型心筋症モデルを作成した 報告がほとんどないため、まず私たちは種々の交感神経作動薬を いくつかの濃度で投与しモデル作成を試みた。最終的にエピネフ リンの単回投与により、心臓基部の過収縮と心尖部の無収縮を生 じるヒトのタコツボ型心筋症と同様の表現系を示すモデルの作成 に成功した。今後このモデル動物を用い、タコツボ型心筋症を発 症する機序、またその機序におけるゲートウェイ反射の関与を検 討する予定である。

これまでに上記の研究内容や今後の実験手法に関して、1回 Web 会議で討論を行っている。

成果

【学会報告】

参加者名、講演タイトル、学会名、開催場所、開催日時入力のこ と

なし

【論文発表】

著者、論文名、掲載誌名、号・年・ページ等、IF入力のこと

なし

【新聞報道】

なし