令和3年度 共同研究報告書

研究区分		一般共同研究			
研究課題名		神経幹細胞発生における炎症と神経活性化の影響の解析			
新規・継続の別		継続			
研究代表者	所属	東京大学 薬学部 分子生物学教室	40 歳	35 歳	
			以下〇	以下〇	
	職名・氏名	教授・後藤 由季子			
研究分担者 (適宜行を追加し て下さい)	所属				
	職名・氏名				
	所属				
	職名・氏名				
受け入れ教員	職名・氏名	分子神経免疫学分野 教授・村上 エ	晃		
概要		多発性硬化症の動物モデルである実験的自己免疫性脳脊髄炎			
(100~150 字程度)		(EAE)マウスを用いて、神経幹細胞の調節機構に与える炎症の影響			
		について共同研究を遂行している。			
研究目的		共同研究先の村上教授は、ゲートウェイ反射を提唱し、そしてスト			
(300 字程度)		レス時に引き起こされる脳内微小炎症が新たな神経回路を異常活			
		性化して臓器連関に障害をもたらすことを発見している。			
		私たちは脳発生および成体における神経幹細胞の運命制御、および			
		細胞の生死・運動・がん化および感染防御のシグナル伝達機構の研			
		究に取り組んでいる。本研究では、実験的自己免疫性脳脊髄炎モデ			
		ルマウスを用いて神経幹細胞の調節機構に与える炎症の影響を調			
		べることを目的とした。			
研究内容・成果		新生ニューロンの数の減少は、学習能力の低下や鬱などの精神疾患			
(1000 字程度・Web 会議の回数		との相関が示されていることから、成体における神経幹細胞がどの			
も記載)		ように制御されて長期間維持され、必要に応じて正しい数と種類の			
		新しいニューロンを作っているのかを明らかにすることは病態機			
		序の解明において重要である。			
		私たちの研究から、Dll1 タンパク質が成体の脳で神経幹細胞を維持			
		するニッチシグナルであることが明らかになっている。Dll1 のシグ			
		ナルは神経幹細胞が分裂後に休眠状態に戻るのに必要でり、分裂し			
		過ぎを防ぎ、長期間の維持につなげていると考えられる。老化は確			
		実に神経幹細胞やニューロン新生を減少させ、また、前述のように、			
		ストレスや精神疾患との関連でニューロン新生の低下が起こるこ			
		とも示唆されている。これらの現象には炎症も関わっていることが			
		知られているので、ストレス時、炎症時、とくにゲートウェイ反射			
		を誘導したときに、Dll1 陽性細胞の局在の変化や Dll1 ノックアウ			
		トマウスの神経幹細胞に対する表現型を検討中である。さらに、炎			

	症の誘因の1つでる感染に対する制御因子として私たちは IPS-1	
	に着目しており、IPS-1の翻訳後修飾が重要であることを見出して	
	いる。炎症誘導、ゲートウェイ反射誘導と IPS-1 の翻訳後修飾につ	
	いても更なる研究を進めているところである。	
	上記研究の打ち合わせの為、Web 会議を年2回程度実施した。	
成果	【学会報告】	
	参加者名、講演タイトル、学会名、開催場所、開催日時入力のこと	
	【論文発表】	
	著者、論文名、掲載誌名、号・年・ページ等、IF 入力のこと	
	【新聞報道】	