2021 Joint Usage and Research Report

Title of Research Project		Targeting PARP7 to Improve Cancer Immunotherapy		
	Institution	University of Oslo	Under40	Under35
			put a O	put a O
Applicant	Job title	Professor Jason Matthews		
	and Name			
	Institution			
Research	Job title			
collaborators	and Name			
(Please add lines as	Institution			
appropriate)	Job title			
	and Name			
Host researcher at IGM		Professor Akinori Takaoka		
Purpose of the Research Project		Cancers, such as breast and pancreatic cancer, are devastating		
(approx. 250 words)		diseases with a very poor prognosis. The composition and immune		
		status of the tumour microenvironment (TME) is central for disease		
		progression. Cancer immunotherapy is a rapidly growing field and		
		represents a paradigm shift in cancer treatment offering a new		
		therapeutic approach to surgery, conventional chemotherapy, and		
		radiation therapy. One of the most studied targets is the inhibition		
		of programmed death ligand 1 (PDL1) and its receptor PD1, which		
		when engaged prevents the overstimulation of the immune system		
		by deactivating T cells. Type I interferons are central regulators of		
		tumour immune cell infiltration and activation. Together with the		
		Takaoka lab, we recently reported that Poly-ADP-ribose polymerase		
		7 (PARP7/TIPARP), a negative regulator of type I signalling. The		
		actions of PARP7 on tumour cells allow them to "hide" from the		
		immune system by inhibiting IFN production. Thus, restoring		
		interferon signalling, would in essence release the "brake" that		
	cancer uses to evade the immune system.			
		The purpose of this application is to determine if the loss or		
		inhibition of PARP7 alone or in combination with immune		
		checkpoint inhibition boosts the anti-tumour effects in vitro cell line		
		and in vivo cancer models.		
		We have three research objectives: (1) Determ	nine how go	enetic and
		pharmacologic targeting of PARP7 signaling in	fluences bre	east cancer
		and pancreatic cancer growth; (2) Investigate t	he role of P.	ARP7 in T
		cell mediated cancer killing (3) Characterize	how PARP7	' signaling

Development of the Research Project and Results (approx.. 850 words) *Enter the number of web meetings. influences PC growth in syngeneic mouse studies. Our proposal will determine the role of PARP7 as a potential therapeutic target on its own or used as combination treatment with cancer immunotherapy.

Unfortunately, like many other things during the past year, the coronavirus pandemic has reduced out research output. Because of the general travel ban in Norway and Japan, physical meetings from April 1st 2021 until March 31st 2022 were not possible. We did, however, exchange research productivity updates via email. A formal web-based meeting was not organized but will be done in the future until other alternatives are possible.

Over the past year, my lab has established the IFN type signaling analysis protocol with the help of Prof Takaoka's lab and their willingness to shar their expertise and protocols with us. We have used the platform to characterize a number of genetically modified pancreatic cancer cell lines in which we have knockout PARP7 expression using CRISPR-Cas. We have created PARP7 knockouts in human AsPC1 and SU8686 cells and in mouse K8484 and CR704 cells. The Two mouse cell lines were generated from spontaneous pancreatic tumours from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mouse line. As expected PARP7 knockout enhances Type I IFN signaling. We are characterizing their growth conditions and viability. We are now using various approaches (RNA-seq) to identify specific gene signatures that are changed by the loss of PARP7. These experiments are proposed under research objective 1 of our research plan. We have also generated and fully characterized and highly specific anti-PARP7 antibody that will be crucial to fully characterize PARP7's role in pancreatic cancer. The antibody works best at detecting mouse PARP7, but plans are underway to develop one that detects human PARP7 as well. The antibody is a mouse monoclonal which give us an unlimited supply by purifying it from the hybridomas.

We have tested selective and specific PARP7 inhibitors in the in vitro models. We have purchased a commercially available PARP7 inhibitor that was identified by Ribon Therapeutics (https://ribontx.com), known as, RBN-2397. RNB-2397 is currently in a Phase 1 clinical trial designed to assess its

anti-tumor activity in patients with advanced-stage solid tumors (NCT04053673). Their data were published in Cancer Cell in 2021 (Gozgit et al Cancer Cell 2021). They reported dose-dependent reduction of non-small-cell lung carcinoma (NCI-H1373) tumor growth at 30 mg/kg in a xenograft model. RBN-2397-mediated PARP7 inhibition prevented CT26 colon tumor growth in a syngeneic mouse model, which was dependent on type I IFN signaling. As expected, in our hands the pharmacological inhibition phenocopies what we observe in the PARP7 knockout cells. We have just recently started the preliminary studies on the co-culture experiments to investigate the role of the PARP7 in T cell mediated. Those studies are ongoing and will be one of our focus this year. Finally, we have begun our own syngeneic cancer cell experiments using our Parp7 mutant mice and the various genetically modified Parp7 knockout mouse breast cancer and pancreatic cancer lines.

In preliminary studies, injection of $Parp7^{WT}$ E0771 cells into $Parp7^{H532A}$ mice reduced, but did not prevent, tumor growth compared with $Parp7^{WT}$ E0771 cells injected into $Parp7^{+/+}$ mice. However, $Parp7^{ko}$ E0771 cells injected into $Parp7^{H532A}$ mice failed to grow into tumors. Our results so far demonstrate that loss of PARP7 in tumor cells combined with loss in the host are required to prevent mammary tumor growth. These findings further support targeting PARP7 for clinical anti-cancer therapy.

Publication

*Enter the information of conference or journal (vol. page. Year.) where the above work was presented.

[Conference, symposium, workshop etc.]

The work is in progress and was not presented at a meeting or conference in 2021 and the first 3 months of 2022. The data were, however, presented during departmental meetings at the University of Oslo. In addition, this ongoing collaboration was instrumental in securing new external funding from the Norwegian Research Council to J Matthews in 2021.

[Journals]

No publications this past year.