令和6年度 共同研究報告書

研究区分		一般共同研究		
研究課題名		ヒト末梢血解析プラットフォームを用いたストレス依存性疾患の		
		マーカー候補の同定と解析		
新規・継続の別		新規		
研究代表者	所属	東京大学 医学部附属病院 アレルギー・	40 歳	35 歳
		リウマチ内科	以下〇	以下〇
	職名・氏名	教授・藤尾 圭志		
研究分担者 (適宜行を追加し て下さい)	所属			
	職名・氏名			
	所属			
	職名・氏名			
受け入れ教員	職名・氏名	研究所長 教授・村上 正晃	•	
概要		SLE および MS 患者の末梢血を解析し、ストレス依存的に誘導さ		
(100~150 字程度)		れる免疫細胞分画やバイオマーカー候補を同定した。村上教授が		
		構築するストレス依存性疾患モデルと連携し、病態修飾分子の検		
		証を進め、B 細胞補助機能を持つ加齢関連 T 細胞(ThA 細胞)の		
		役割を報告した。		
研究目的		自己免疫疾患、とくに全身性エリテマトーデス (SLE) および多発		
(300 字程度)		性硬化症 (MS) の病態には、ストレスが深く関与すると考えられ		
		ている。本研究では、我々が構築した患者末梢血の網羅的解析プ		
		ラットフォームを用いて、ストレス暴露の可能性が高い SLE およ		
		び MS 患者の検体を中心に、ストレス依存的に誘導される免疫細		
		胞分画およびその関連分子群を同定することを目的とした。さら		
		に、村上教授のグループが開発したストレス依存性中枢神経疾患		
		モデルを活用し、同定された候補分子の疾患修飾作用を in vivo で		
		検証することで、バイオマーカーや治療標的としての妥当性を評		
		価する。この研究成果の一端として、村上教授を大会長とする		
		JCS2024 において、B 細胞応答を促進する加齢関連 T 細胞(ThA		
		細胞)について報告した。		
研究内容・成果		本研究では、SLE や MS といった自己免疫疾患の病態形成におけ		
(1000 字程度・Web 会議の回数		るストレスの影響を明らかにするため、我々が独自に構築した患		
も記載)		者末梢血網羅解析プラットフォーム(Cell 2021, 2022)を活用し、		
		ストレス暴露の可能性がある患者検体の詳細な解析を行った。免		
		疫細胞分画解析、トータルセック、シングルセル RNA シーケンシ		
		ング、および数理解析を通じて、ストレス依存的に特異的な遺伝		
		子発現パターンを示す免疫細胞群を複数同定した。		

特に、加齢とともに増加する CD4*T 細胞集団である加齢関連へルパーT 細胞 (ThA 細胞) は、細胞傷害性を有すると同時に、CXCL13 や IL-21 などの B 細胞補助因子を発現する点が特徴的であり、SLE や関節リウマチ (RA) の病態と密接に関連していた。また、ImmuNexUT データベースを用いた網羅解析から、ZEB2 が ThA 細胞の機能的特性—特に細胞傷害性および B 細胞補助能を制御する転写因子であることを示した。また、ThA 細胞は自己抗体産生、疾患活動性、臓器病変(皮膚、腎、筋)と強い相関を示し、特発性炎症性筋疾患患者の筋組織・肺にも浸潤していることが判明した。

さらに、村上教授の研究グループが構築したストレス依存性自己 免疫モデルを活用し、藤尾研究室で同定されたバイオマーカー候 補の一部(特に血清中で検出可能な液性因子)について、in vivo での阻害実験を進行中である。これにより、ストレス関連自己免 疫疾患における新規治療標的としての有用性が期待される。

IL-6 アンプやゲートウェイ反射といった村上教授の提唱する炎症制御ネットワークについては、本研究では直接的な解析は行っていないが、今後、ThA 細胞やストレス応答細胞の誘導経路との統合的理解を進める上で、重要な理論基盤となると考えられる。

本研究成果は、AMED ムーンショット目標 7「病気につながる血管周囲の微小炎症を標的とする量子技術、ニューロモデュレーション医療による未病時治療法の開発」、および AMED-CREST「ストレスを介する疾病発症の分子メカニズムの解明とバイオマーカー検出技術創成」にも直結するものであり、ストレスに関連した自己免疫疾患の新たな診断・予防・治療戦略構築の基盤となることが期待される。

成果

【学会発表】

第1回日本サイトカイン学会年会(JCS2024)(2024年7月26日、 札幌)

【論文発表】

該当なし

【新聞報道】

該当なし

【学位取得者】

該当なし